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was 20 dB smaller than predicted by the theory. This is 
probably attributable to the nonuniformities in the 
electron density and dc magnetic-field strength in the 
plasma which reduce the resonance amplitude. The 
effects of these nonuniformities on the narrow plasma 
resonance peaks are naturally more pronounced than 
on the broad geometrical resonances. Second, an 
additional resonance, not predicted by the theory, was 
discovered in the combination frequency power as a 
function of the dc magnetic-field strentgh. This reson­
ance occurs near values of the dc magnetic field for 
which the electron cyclotron resonance frequency is 

I. INTRODUCTION 

THE interaction between a charged particle and an 
electromagnetic wave in the presence of a 

constant magnetic field underlies several phenomena 
currently under investigation concerning the Van Allen 
particles,1 plasma in the earth's magnetosphere,2 and 
the diagnostics, heating, and confinement of plasma 
in the laboratory.3 This interaction exhibits resonance 
effects when the wave frequency is at or near the 
particle's cyclotron frequency. In this paper we study 
the nature of the interaction when neither the magnetic 
field of the wave nor the relativistic mass change of the 

1 E. N. Parker, J. Geophvs. Res. 66, 2673 (1961); A. J. Dragt, 
J. Geophys. Res. 66, 1641'(1961); D. G. Wentzel, J. Geophys. 
Res. 66, 359 and 363 (1961). 

2 R. A. Helliwell, J. Geophys. Res. 68, 5387 (1963). 
3 S. J. Buchsbaum, E. I. Gordon, and S. C. Brown, J. Nucl. 

Energy C2, 164 (1961); M. C. Baker, et aL, Nucl. Fusion, 1962 
SuppL, Part I, 345 (1962); H. A. H. Boot and R. B. R-Sherby-
Harvie, Nature 180, 1187 (1957); R. Z. Sagdeev, Plasma Physics 
and Controlled Thermonuclear Reactions, edited by M. A. Leonto-
vitch (Pergamon Press, Inc., New York, 1957), Vol. 3, pp. 
406-422; M. Ericson, C. S. Ward, S. C. Brown, and S. J. Buchs­
baum, J. Appl. Phys. 33, 2429 (1962). 

equal to the arithmetic mean of the frequencies of the 
incident waves. Unlike the other resonance peaks, the 
magnetic-field value for which this resonance occurs is 
independent of the electron density. The origin of this 
resonance is not understood at this time. 
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particle with energy are neglected, and we place special 
emphasis on the resonance effects. 

The equation of motion of a particle of rest mass 
mr and charge e in a constant magnetic field Bo is 

p=CE+(vA)XB+(vA)XB 0 ] . (1.1) 

Here E and B are the electric and magnetic fields of the 
electromagnetic wave, p the particle's momentum, v 
its velocity, and c the speed of light in vacuo. Gaussian 
units are used, and the dot signifies differentiation with 
respect to time. The electromagnetic wave is charac­
terized by an angular frequency a> and a propagation 
vector k, and in this paper we consider only the case 
where B0 and k are parallel and k and E are perpen­
dicular, i.e., a purely transverse wave which propagates 
parallel to the constant field Bo. For convenience, we 
take the direction of B0 and k to be the z direction. If 
the medium through which the wave propagates has an 
index of refraction n, then 

n=kc/a>=B/E. (1.2) 
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FIG. 1. An electron in a circularly polarized electromagnetic 
wave and a constant magnetic field. 

We shall denote the total energy of the particle, rest 
plus kinetic, by 3C and the particle cyclotron frequency 
by 

0 = -eB0/mc= -eBQ(l~-v2/c2)ll2/mrc (1.3a) 

= -eBQc/3C. (1.3b) 

In dealing with Eq. (1.1) it is common practice to 
neglect the term involving the magnetic field of the 
wave and to treat the particle's mass as a constant so 
that p=w rv. 4 Thus "linearized," Eq. (1.1) becomes 
mathematically trivial, and its solution has the follow­
ing two properties: (1) The particle's velocity in the z 
direction is a constant; (2) at cyclotron resonance, i.e., 
when o)—kz—12=0, the energy of the particle increases 
indefinitely according to the formula 

3Q,=3Q,o+evioEt cos60+e2EH2/2nir. (1.4) 

We have defined the component of the particle's 
velocity perpendicular to the z direction to be Vj., and 6 
denotes the angle between the E of the wave and Vj.. 
The subscript 0 appended to any variable refers to the 
initial value of that variable at 2=0. 

This solution to the linearized version of Eq. (1.1) 
fails to illuminate several important features of the true 
interaction in the neighborhood of cyclotron resonance. 
This fact has been realized by several investigators, and 
some approximate treatments of Eq. (1.1) including 

4 See, for example, T. H. Stix, The Theory of Plasma Waves 
(McGraw-Hill Book Company, Inc., New York, 1962), p. 9; or, 
W. P. Allis, S. J. Buchsbaum, and A. Bers, Waves in Anisotropic 
Plasmas (MIT Press, Cambridge, Massachusetts, 1963), p. 19. 

nonlinear effects have been given.5 In this paper we 
present an exact solution to Eq. (1.1) for the case of a 
circularly polarized wave. This solution reveals the 
following properties of the true interaction: (1) The 
energy of the particle obeys a differential equation of 
the form (d3C/dt)2+V(3C) = 0, where F(3C) is some 
function of 5C. Since this is the same differential equation 
as that describing one-dimensional motion of a particle 
in the potential field F(5C), a qualitative picture of the 
dependence of energy upon time can be obtained by 
plotting the function F(3C) and imagining a particle 
moving on the resulting contour. (2) If the particle is 
initially not at resonance, i.e., (co—&i0—^o)^0, or if 
the particle is initially at resonance with the index of 
refraction n^l, then V(3Q) has a shape similar to those 
shown in Figs. 3 to 6, and the energy and the particle's 
momentum in the z direction are periodic functions of 
time. (3) If the particle is initially at resonance and 
if n=l, the particle's energy and momentum in the z 
direction both increase indefinitely. In this case F(3C) 
has a shape similar to that shown in Fig. 2, there being 
only one finite zero. Of course, Eq. (1.1) does not 
include the effect of radiation damping and we would 
expect this effect, if included, to finally limit the energy 
of the particle. 

Before going on to the mathematical derivation of 
the above-stated results, we will present a physical 
picture of the effects causing them. As an example we 
shall consider the case of the electron depicted in Fig. 1. 
At time 2=0, the fields are as shown and the electron is 
directly above point A with its velocity antiparallel 
to the E of the wave so that initially it is gaining energy. 
If at this instant a> = O0 so that we start from exact 
resonance, subsequent motion of the particle may 
destroy this resonance condition in two ways. First, 
as the electron gains energy, it becomes more massive, 
and, consequently, its cyclotron frequency decreases. 
Second, the magnetic field of the wave accelerates the 
particle in the direction of B0 and k, and as the electron 
acquires some velocity in this direction it will see the 
wave at a Doppler-shifted frequency which is lower 
than w. The relative importance of these two effects 
depends on the ratio B/E—n, the index of refraction 
characterizing the propagation. If n>l, the wave is 
more B than E, and the magnetically produced Doppler 
shift is the prime resonance destroyer. If n<l, the 
wave is more E than B, and the gain in mass is pre­
dominant. In either case the angle 6 between E and v, 
which initially was 7r, changes with time until it 
finally becomes acute. When this happens, both effects 
reverse; the electron now loses energy and the magnetic 
force has a component antiparallel to B0 and k. This 
situation is maintained until 0 once again becomes 

5 See, for example, T. H. Stix, The Theory of Plasma Waves 
(McGraw-Hill Book Company, Inc., New York, 1962), p. 162; 
J. W. Dungey, J. Fluid Mech. 15, 74 (1963); S. Rand, Phys. 
Fluids 5, 1237 (1962); T. Consoli and G. Mourier, Phys. Letters 
7, 247 (1963). 
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obtuse, and the electron reverts to gaining energy. This 
alternate acceleration and deceleration of the electron 
by the E of the wave accounts for the periodicity of 
the dependence of energy on time described in the 
preceding paragraph. 

When n~ 1, however, so that B = E, a most interesting 
phenomenon occurs. In this case, the magnetic and mass 
effects just cancel one another, and co—kz—O=0 
throughout the electron's motion. What happens is 
that as the electron gains energy and the cyclotron 
frequency consequently decreases, the magnetic field 
of the wave produces just the right velocity along B0 

and k to Doppler-shift the wave frequency to the value 
necessary to maintain resonance. The effect is equiv­
alent to a synchrotron which maintains its synchronism 
automatically. For this reason, we shall refer to the case 
where n—\ and the particle is initially at resonance as 
the synchronous case. That such an effect can exist 
was first realized by Davydovskii.6 

In the succeeding sections the preceding highly 
descriptive discussion will be formalized. In Sec. I I we 
reduce Eq. (1.1) to an ordinary differential equation 
for the energy of the particle as a function of time. In 
Sec. I l l , several solutions of this equation at resonance 
are presented for various conditions. In Sec. IV, a 
numerical example is presented. 

II. SOLUTION OF THE EQUATION OF MOTION 

We start with the expression for the rate of change 
of energy of a charged particle in an electromagnetic 
field, 

4 i e / * = e ( v E ) . (2.1) 

For a plane electromagnetic wave, Maxwell's equations 
require that 

k X E = ( « / c ) B . (2.2) 

If we use Eq. (2.2) to eliminate B from Eq. (1.1) 
and then compare the z component of the resulting 
equation with Eq. (2.1), we arrive at the relationship 

d3C/dt=(u/k)p2. (2.3) 

Equation (2.3) expresses the fact that an electromag­
netic wave cannot change the energy of a particle 
without also changing its momentum, a relationship 
easily understood if one adopts a photon picture of the 
interaction. Equation (2.3) may be immediately 
integrated to give 

3C(0 =3Co+ (co/ft)[>,(0 -pzol. (2.4) 

We now note that the correct condition for resonance 
when the particle has a component of its velocity in the 
z direction is 

co—kz—0 = 0. 

If this condition is satisfied, one finds by making an 

6 V. Ya. Davydovskii, Zh. Eksperim i Teor. Fiz. 43, 886 (1962) 
[English transl. Soviet Phys.—JETP 16, 629 (1963)]. 

appropriate Lorentz transformation that an observer 
in the frame in which the particle has zero velocity in 
the z direction will observe the wave frequency equal 
to the particle cyclotron frequency. To compute the 
effect of the wave magnetic field on resonance we 
compute the quantity 

d(co-kz)/dt= (kc/eB0)d(ttpz)/dt. (2.5) 

Using Eq. (2.3) and the fact that Q(dKfC/*)=-3Cfl, 
which follows directly from Eq. (1.3b), Eq. (2.5) may 
be expressed 

d(a>-kz)/dt= (kc/eB0)(p,-kW/<a)&. (2.6) 

Equations (1.2) and (2.4) may now be used to obtain 
the desired equation 

d(a>-kz)/dt= ( J i + 1 ) 0 , (2.7) 

where d\ is a constant determined by the initial 
conditions 

^i=(w2co-^o-Oo)/120 . (2.8) 

Equation (2.7) may be integrated to yield 

(w-ifei-0) = rfiQ+rf2w, (2.9) 
where 

d2=l-n\ (2.10) 

Equation (2.7) relates the effect of the magnetic 
field of the wave to the change in cyclotron frequency 
produced by the change in mass with energy. For initial 
cyclotron resonance, i.e., when co — kz0—120=0, 

dx= (n2-l)u/tt0= - < W f l 0 . (2.11) 

We may now verify the statements made in Sec. I con­
cerning the case when # = 1, the so-called synchronous 
case. FromEqs. (2.10) and (2.11), d i = d 2 = 0 when n= 1, 
and therefore, by Eq. (2.9), co — kz—12=0 for all time. 
Thus, if a particle is initially started at resonance, it will 
remain at resonance indefinitely when n=l. In Sec. I l l 
we derive the rate of energy increase for this case. 

The results derived so far are valid for any electro­
magnetic wave satisfying Eq. (2.2). We now confine our 
attention to the case of a circularly polarized wave. In 
this case the fields are given by 

BX=B cos(cx)t—kz) , Ex=Esm(o)t—kz), 

By=B sm(cot-kz) , Ey= -E cos(a>t-kz) , (2.12) 

BZ=BQ, E 2 = 0 , 

and the three components of Eq. (1.1) may be written 
out as 

p<c+topy= (eE/o))(o)—kz) sin(ut—kz) , (2.13a) 

py—tipx=: — (eE/oi)((x)—kz) cos(wt—kz) , (2.13b) 

pz= -U(B/Bo)[_px sin(co/—fo) 
— py cos(co£—kz)"]. (2.13c) 

We show in the Appendix that Eqs. (2.13) are equiv-
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alent to an ordinary differential equation for the 
cyclotron frequency £l(t) or for the energy 3C(/). The 
equation for 3C(t) is 

(d&/dt)2+V(3Q) = 0, (2.14) 
where 

^ ( ^ ) = i(^V^2){^22(5C-5Co)4+4M25Co(5C-5Co)3 

+4(r1
2+J2r2)5C0

2(5C~X0)2 

+8(rir2-r3)W(5C~3Co)-4f4
25Co4}; (2.15) 

ri= (^il20+^2co)/w, (2.16a) 

r 2 = - (Oo/co)[E/»ioQo s i n V ^ o 2 + J ^ o / £ 0 V ] , 
= (Qo/o>)Z(y1Q/c)(E/B0) sin0o 

-EXlo/Bfa], (2.16b) 

r 3 =O 0
3 £ 2 /coW, (2.16c) 

fi^evioE coŝ o/̂ Coco 

= ~ (fto/co) (doA) (E/^o) cos0o. (2.16d) 

As described in Sec. I, Eq. (2.14) is just the differential 
equation which describes motion in the one-dimensional 
potential well given by V(x). Since F(3C) is a sum of 
powers of 3C, Eq. (2.14) admits a general solution in 
terms of elliptic integrals.7 Several features of the 
motion, however, can be deduced without recourse to 
this rather formidable solution. We first note that 
7(3C)<0 when 5C=X0 and that F(3C)>0 as OC -> ± oo, 
except when r±=d2=0 which corresponds to the special 
synchronous case. Thus, except in the synchronous 
case, F(5C) must have at least two real zeros, and since 
(d3C/dt)2 in Eq. (2.14) must be positive, JC must 
oscillate in the "potential well" between two of the 
zeros of F(3C). The maximum and minimum value 
acquired by 3C can therefore be found simply by finding 
the roots of a fourth-degree polynomial. Finally, we 
note that since the coefficients in this polynomial depend 
on 0o only through sin0o and cos2#o, the limits of the 
energy oscillation for initial angles do and w—#o are 
identical. 

III. BEHAVIOR FOR INITIAL CYCLOTRON 
RESONANCE 

In the remainder of the paper we consider only the 
solution of Eq. (2.14) when the particle is at resonance 
at 2=0, i.e., co—^g—^o=0. In this case Eqs. (2.11) 
and (2.16a) show that ri~0. I t is convenient to treat 
the synchronous (n= 1) and the oscillatory cases (n^l) 
separately. 

A. Synchronous Case 

F o r » = l , Eqs. (2.10) and (2.11) show that di = d2=0. 
In this case Eq. (2.15) becomes 

F s y n c (3C) = - co2JC0
2{ 2r3 (3CoAC) 

+W~2r3)(5Co/5C)2}, (3.1) 
7 P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals 

for Engineers and Physicists (Springer-Verlag, Berlin, 1954). 

and the differential Eq. (2.14), subject to the boundary 
condition 3C=3Co at / = 0 , is soluble with elementary 
integrals to give 

6rM=w^-3(r4
2~2rz)w+2rA(r4

2~-3rd), (3.2a) 
where 

w=[_2rz{3Z/K,)+n2-2rzJiK (3.2b) 

Equation (3.2) expresses time as a function of energy; 
in order to invert it and express energy as a function of 
time, a cubic equation must be solved. While it is 
possible to do this in closed form, the resulting expres­
sion is quite involved and will not be given here. The 
asymptotic form of the solution as i —•> °o is quite 
simple, however, and can be obtained directly from 
Eq. (3.1). 

3C(0~3e0($r«)1'»(wOw 

t—>oo 

= Wo(9/2)U*(a0/u)Z(E/Bo)utyiK (3.3a) 

The validity of Eq. (3.3a) is limited to large times such 
that (co0>(2/9r3)1/2C(f42/2r3)-l]3/2. For special initial 
conditions, such that r4

2—2r3=0, i.e., (VLQ/C)2 COS20O 

= 212/co, the last term in Eq. (3.1) is zero and the 
relation 

X=3Co[ l+ (9r3/2)1/2co/P3 (3.3b) 

is valid for all time. 

B. Oscillatory Case 

When n^l, ^27^0, it is more convenient to rewrite 
Eq. (2.14) in terms of a dimensionless variable 

^=(X-3Co)/3Co. (3.4) 

Equation (2.14) now becomes 

(du/dt)2+VrGS(u) = 0, (3.5) 
where 

FresM = i[co2/(l+^)2] 
X {d2V+4:d2r2U2- 8rzu- 4r4

2} . (3.6) 

Equation (3.5) must be solved subject to the boundary 
condition u=0 at / = 0. I t is possible to write down a 
general solution to Eqs. (3.5) and (3.6) which expresses 
t as a function of u in terms of elliptic integrals of the 
first and third kind.7 This general solution is quite 
involved and, more importantly, it is impossible to 
invert the expression and obtain u as a function of t 
in terms of known functions. From a computational 
point of view, it is generally simpler to forget about 
elliptic integrals and use a standard numerical inte­
gration procedure to solve the differential Eq. (3.5). 

There is an important set of conditions, however, 
when solution in terms of elliptic functions is quite 
profitable. First consider the limits between which u 
oscillates; these can be found by finding the zeros of 
the function V(u) given in Eq. (3.6), that is, finding 
the roots of the fourth-degree polynomial 

P(u) = iu*+(r2/d2)u
2-2(rz/d22)u-(n2/d2

2). (3.7) 
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Since u = 0 at £=0, u must oscillate between the two 
roots of Eq. (3.7) which flank the point u=0; we call 
the larger of these roots a, the smaller /3, so that fi<u<a. 
If now |a|<<Cl and |/3|<3Cl, as will be the case if the 
index of refraction n is not in the neighborhood of unity, 
and if the electromagnetic wave is not too strong, then 
to good approximation Eq. (3.6) may be replaced by 

VT*{u)=dWP(u). (3.8) 

Equation (3.5) may then be written 

(d2u)dt = du/[_-P{u)Ji2 (3.9a) 

= 2du/l(a-u) (u-0) (u-y) {u- h)J^, (3.9b) 

where y and 8 are the other two roots of P{u) = 0. The 
solution to Eq. (3.9) depends upon whether 7 and 8 
are both real or are complex conjugates. 

Case of two real roots. If 7 and 8 are complex, then8 

y — m-{-in, 8 — m — in (3.10) 
and 

(f3R+aS)+((3R-aS) cnr)(t-to) 
u(t) = , (3.11) 

(R+S)+(R~S)cnr)(t-t0) 
where 

R*=(a-m)2+n2, S2= ((3-m)2+n2, (3.12a) 

i ^ i t M - R S ) 1 ' 2 . (3.12b) 

The function cn(#) is a Jacobi elliptic function9; the 
modulus of the elliptic function is given by 

K a =[ (a - j8 ) 2 ~ {R-Syy^RS. (3.13) 

The constant to is chosen so that at / = 0 , u=Q, i.e., 

0177/0= (aS+pR)/ (aS-pR). (3.14) 

The period T for the energy oscillation may now be 
found from the knowledge that the period of cnx is 
4K, K being the complete elliptic integral of the first 
kind whose modulus is given by Eq. (3.13). 

T= 4^/77=SKI I d*> I ( i ^ ) 1 ' 2 ] - 1 . (3.15) 

Case of four real roots. If 7 and 8 are real, the solution 
has a different form depending upon whether a and p 
are larger or smaller than 7 and 8. When the roots are 
ordered so that a>0>P>y>8 the solution is given by10 

p(a-y)-y(a-p) $n2M(t-t0) 
u(t) = , (3.16) 

( a - 7 ) - (a-p) sn2M(t-t0) 
where 

M = id2a>(a~yyi2(t3-8yi2, (3.17) 

and the modulus of the Jacobi elliptic sine function is 

K2=(a-(3)(y-8)/(a~y)((3-5). (3.18) 
8 Reference 7, Eq. (259.00), p. 133. 
9 Reference 7, p. 18. 
10 Reference 7, Eq. (256.00), p. 120 and Eq. (252.00), p. 103. 

The constant t0 is again chosen so that u=0 at t = 0, and 

snM/0= lP{a-y)/y{a-p)Jl2. (3.19) 

Since the period of sn2x is 2K, K being the complete 
elliptic integral of the first kind whose modulus is 
given by Eq. (3.18), the period of the energy oscillation 
in this case is 

T=2K/M=8K[\d2u\ ( a -7 ) 1 / 2 (^ -5 ) 1 / 2 ]~ 1 - (3.20) 

For the other possible ordering of the roots, 8>y>a 
>0>/3 , equations analogous to (3.16)-(3.20) can be 
written.10 

Low Initial-Energy Approximation 

When the wave is sufficiently weak and the initial 
kinetic energy of the particle is low enough to make 
(vio/c) small, there is a useful approximation to the 
exact solution of Eqs. (3.5) and (3.6). 

More precisely, under the conditions 

| J E / J B O | « 1 , (3.21a) 

I ( l ~ # 2 ) £ 2 / ^ o 2 | 1 / 3 « l , (3.21b) 

( ^oA)«2 |Oo /co | | £ / ( l - ^ 2 ) ^o | 1 / 3
7 (3.21c) 

the zeros of Eq. (3.6) are given to good approximation 
by 

a=2(tt0/co)[E/(l-n2)Bo3m, (3.22a) 

i3=- |(co/Oo)(^oA)2 , (3.22b) 

7 = | a ( - l + i V 3 ) , 8 = ^a(-\-m). (3.22c) 

Now if n is not very close to unity and if (O0/co) is not 
excessively large, then |0|<<C|a|<Cl, and we can there­
fore use the approximate solution (3.11). While it may 
seem that there are a prohibitively large number of 
conditions stated above, they can all be satisfied with 
quite reasonable values for the parameters. With the 
roots of Eq. (3.22), the modulus for the elliptic functions 
as given by Eq. (3.13) is K2= ( 2 - \ 3 ) / 4=0 .0670 . The 
corresponding complete elliptic integral of the first 
kind is K= 1.598 so that the period as given by Eq. 
(3.15) is simply 

T=8K/\(3yi*ad2a>\ 

= 4.86CI OoI 11 — »211/8(-E/JBo)278]-1 • (3.23) 

High Initial-Energy Approximation 

Under the conditions 

| £ / 5 o | « l , (3.24a) 

0o not near±7r/2 , (3.24b) 

(W<0»2 |Go /« | | E / ( 1 - » 2 ) £ 0 | 1 / 8 , (3.24c) 

the four zeros of Eq. (3.6) are given to good approxi­
mation by 

± [ 2 (Oo/co) (wio/c) (E/Bo) (sin0o± 1 ) / (n 2 -1) ] 1 ' 2 . (3.25) 
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^ PSEUDO-POTENTIAL FOR SYNCHRONOUS CASE 
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FIG. 2. Synchronous case for electron. co=Oo = 27rX2.80 Gc/sec, 
» = 1.0, J3o = 1000G, £ = 0.1 esu. The solid curve is the exact 
solution given by Eq. (3.2); the dashed curve represents Eq. (1.4), 
the solution in the linear approximation. 
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FIG. 4. Oscillatory case for electron. co=S3o = 27rX2.74 Gc/sec, 
w=v2, £o = 1000 G, £ = 0.1 esu. 

Two of the above roots are real and two are pure 
imaginary, and since by conditions (3.24) the magnitude 
of the real roots is much less than unity, we can use the 
approximate solution of Eq. (3.11). From Eq. (3.12a) 
we find 

R=S= 2[(O0/co) (vl0/c) (E/Bo)/ \n2-l\ J'2, (3.26) 

and the modulus for the elliptic functions is given by 

/c2=i(l±sin0o), (3.27) 

PSEUDO-POTENTIAL FOR ENERGY OSCILLATION 
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FIG. 3. Oscillatory case for electron. Low-energy approximation. 
w =Q 0 = 2irX2.80 Gc/sec, w = v2, £ 0=1000G, £ = 0.1 esu. The 
solid curve is the exact solution given by Eq. (3.5); the dashed 
curve represents Eq. (1.4), the solution in the linear approxi­
mation. 

where the choice of sign in Eq. (3.27) corresponds to 
that choice in Eq. (3.25) which gives the pair of real 
roots. In this case, the period for the energy oscillation 
is given by 

T = 8 i q > 2 - l | \u\KJr1 (3.28a) 

= 4X[«Go(Wc)(E/B0) \n*-l\~\~v\ (3.28b) 

IV. EXAMPLE 

In order to illustrate more concretely the motion 
described by the preceding equations we have com­
puted the results for an electron moving in a constant 
magnetic field of 1000 G illuminated with microwaves. 
We take the E field of the microwaves to be 0.1 esu. 
We take the velocity of the electron in the z direction 
to be zero at £=0, and the microwave frequency to 
equal the initial electron cyclotron frequency so that 
the electron starts from exact resonance. We have 
computed the energy as a function of time by numeri­
cally integrating the differential Eq. (3.5) for several 
initial kinetic energies and angles 0o- With each graph of 
energy versus time we show the corresponding pseudo-
potential energy function Fres(^)/coW defined in Eq. 
(3.6). 

When n=l, we have the synchronous case and the 
results are shown in Fig. 2 for an initial electron energy 
less than 10 eV. For this low an initial energy, the results 
are nearly independent of the initial angle do. In the 
synchronous case the shape of the pseudopotential is 
always qualitatively similar to that shown in Fig. 2; 
the curve always passes through the point (0,0), goes 
through a minimum, and then approaches zero asymp­
totically as u —> oo, Also shown in Fig. 2 as a dashed 

file:///u/KJr1
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curve is Eq. (1.4), the energy as a function of time as 
obtained from the linearized equation of motion. I t 
can be seen that the linearized equation ceases to be 
adequate for times greater than about 0.5 jusec, in the 
example chosen. 

To study an oscillatory case we take w=V2. The 
time variation of the energy for an initial kinetic 
energy less than about 10 eV is shown in Fig. 3. In 
this case the electron's energy periodically increases to 
2.2 keV every 0.13 jusec. This oscillatory behavior should 
be contrasted with the dashed curve, which again gives 
the results of the linear theory, Eq. (1.4). For such a low 
initial energy the approximate formulas, Eqs. (3.22) 
and (3.13) apply and yield results nearly identical with 
those shown in Fig. 3. 

When the initial kinetic energy is 10 keV, the initial 
angle 0o between E and Vj.0 is important, and the results 
are shown for 0o=O(7r), ^w, and — \ir in Figs. 4, 5, and 
6. Note that when 6Q=±\TT the electron only gains 
energy from the wave since u never goes negative. The 
conditions of Figs. 4-6 are such that neither the low nor 
the high initial-energy approximation holds. In Fig. 7 
we show the range of the energy oscillations versus 
initial kinetic energy for the case where Vio is either 
parallel or antiparallel to E. As can be seen, as the 
initial kinetic energy increases, the amplitude of the 
energy oscillation becomes a decreasing fraction of the 
total energy of the particle. In Figs. 8 and 9 we show 
the maximum increase in kinetic energy during one 
period of oscillation and the period of oscillation as a 
function of initial kinetic energy. The large increase in 
period for £ 0 > 0 . 5 MeV is due to the fact that the 
particle is becoming quite a bit heavier in this region 
due to the relativistic mass increase. 
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FIG. 6. Oscillatory case for electron. a>=O0=27rX2.74 Gc/sec, 
w=v2, £o=1000 G, E=0.1 esu. 

V. CONCLUSION 

We have shown that the solution to Eq. (1.1) can 
be reduced to rinding the solution of a simple ordinary 
differential Eq. (2.23). The solution of this differential 
equation directly gives particle energy as a function 
of time; after this is known, any other parameter of 
the motion which may be of interest is reduced to 
quadratures. Using this formalism it should be possible 
to obtain a qualitatively and quantitatively better 
understanding of processes which depend upon the 
interaction between an electromagnetic wave and a free 

P S E U D O - P O T E N T I A L F O R ENERGY O S C I L L A T I O N 
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FIG. 5. Oscillatory case for electron. a>=Qo = 27rX2,74 Gc/sec, 
b^y/29 £o=100Q G, E -Q . l esu. 
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FIG. 7. Range of energy oscillation versus initial kinetic energy 
co=Q0, w =v2 , £ 0=1000G, E=0.1 esu. 
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E0 

10 i o 2 103 104 i o 5 T o * 

= INITIAL KINETIC ENERGY OF ELECTRON (eV) 

FIG. 8. Maximum increase in energy during one period of 
oscillation versus initial kinetic energy. w=fio, w=v2, B0 = 1000 G, 
E=0.1 esu. 

surrounding the earth. Our theory relates to both these 
phenomena. It should also be possible to obtain an 
idea of how close to cyclotron resonance the linear 
theory of waves in a plasma is valid, since our solution 
enables one to get a handle on the nonlinear effects 
involved in the particle's motion. Work is currently 
underway on the use of the preceding solution in the 
investigation of the effects on the Van Allen particles 
of cyclotron-resonant VLF radio waves. Naturally 
occurring VLF energy in the form of whistlers may be 
an important loss mechanism in certain regions of the 
Van Allen belts, as already indicated by Dungey.13 

Finally, work is under way to determine if the syn­
chronous acceleration of a particle, as described by 
Eq. (3.5), might be a possible mechanism for the acceler­
ation of cosmic rays to their extremely high energies. 
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charged particle. A microwave oscillator, the cyclotron 
resonance backward-wave oscillator,11 which has as its 
basis the phenomena of "magnetic bunching" produced 
by the B of the wave, has already been constructed. 
Similarly, "magnetic-bunching'' has recently been 
advanced12 as an explanation for whistler-triggered 
VLF radio emissions arising in the tenous plasma 

t <0 10z 103 IO 4 10s 106 107 

E 0 = INIT IAL KINETIC ENERGY OF ELECTRON ( e V ) 

FIG. 9. Period of energy oscillation versus initial kinetic energy. 
w = O0j w =v2, £o = 1000 G, £ = 0 . 1 esu. 

11 K. K. Chow and R. H. Pantell, Proc. IRE 48, 1865 (1960). 
12 N. Brice, J. Geophys. Res. 68, 4626 (1963); S. F. Hansen, 

ibid. 68, 5925 (1963). 

APPENDIX 

In order to solve the coupled set of differential Eqs. 
(2.13) we define 

o-(/)= / <M2(r), (Al) 

and note that Eqs. (2.13a) and (2.13b) are equivalent 
to the integral equations 

px= PLO cos[a(t)+oT\+ (eE/co) / dr[co — kz(r)'] 
Jo 

X s i n [ o r ( 0 - t r ( r ) + c o r - j f e 2 ; ( r ) ] , (A2a) 

pv = pxosin\\r(t)+a]--(eE/a>) / rfr[co—fti(r)] 
Jo 

Xcos[or(0~cr(r)+cor-fe(r)]. (A2b) 

This equivalence may easily be demonstrated by 
differentiating Eqs. (A2a) and (A2b). The quantities 
pio and a are constants determined so that at /=0, 
px<?+py<?=pi<? and pyo/pXQ= tana. We may now 
substitute Eqs. (A2a) and (A2b) for px and py in Eq. 

13 J. W. Dungey, Planet. Space Sci. 11, 591 (1963). 
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(2.13c) to obtain a nonlinear integrodifferential equa- an ordinary differential equation by noting that 
tion in z and pz. multiplication by di£l(t)+d2o) makes Eq. (A6) an exact 

differential. Integrating this differential from 0 to t 

p,= - f l ( 5 / J B o ) U i o s m [ ^ - f e « - . W - a ] g i v C S ^ ^ l ™ 

+ (eE/v) f < H > - * i ( r ) ] cos&rf-**(*)-*(*) = (EP^eB^ s i n C M O + ' M - f t . l 

-cox+fa(r)+a(x)]}. (A3) + ( £ » / ^ W i + l ) B ( r ) + ^ ] 

We now use Eq. (2.9) to rewrite Eq. (A3) as an equation X s m [ ^ « + ^ - ^ ( r ) - < W ] 
in 0. Integrating Eq. (2.9) from 0 to / gives +d1/Q0+d&>/2Q<?+EpJ.<) sin0o/e-Bo2. (A8) 

<at—kz(t)+kz<>= (di+l)cr(f)+d&>t. (A4) if w e now differentiate Eq. (A6) with respect to time 
T- -•- „ „ , / , , n , ,„ -s , and subtract the resulting equation from (diQ+d2oi) 
From Eqs. (1.2), (1.3b), and (2.3), we have t]m&s Eq_ (Ag)> ^ t e r m s i n v o l v i n g trigonometric 

p2=neBo(Q/Q2). (AS) functions vanish leaving the ordinary differential 
equation 

After appropriate substitution in Eq. (A3) we obtain 
d2/ 1 \ d2

2u>2 3^itt2co 

f —(—)+—+—-
(0/fl3)=-(£/eJB0

2)U10cos[^i<7(0+^^-^o] <#\2a»/ 2fi2 20 

( didtfj} dfoi* dsfoEpi.D sin0o E'd^ 

O0 2O0
2 eB0

2 B0
2 J 

( dx
2 drd2o) diEpxosmOo E? \ 

—+ + + (rfd-1) 0=0. 
^ w o L « , x v W 1 u , ^ « ^ w ^ , j , , v ^ , ^o 2O0

2 eBo2 w-So2/ 

did2co ^2
2co2 d2coEpiQ sin^o 2i%> 

+ (e£/co) /" drl(d1+lMr)+d26)'] 
Jo 

where 0O is the initial angle between Vj.0 and E of the Using Eq. (1.3b), Eq. (A9) may be converted to an 
w a v e equivalent equation for 5C. The resulting equation 

do—kzo-\-a+(ir/2). (A7) becomes an exact differential when multiplied by 
3C(d3C/dt), and if we integrate this differential between 

The integrodifferential Eq. (A6) may be converted to 0 and t we arrive at Eq. (2.14) of Sec. I I . 


